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Abstract. We formulate a simple decision model of a market maker maxi-
mizing an utility from his consumption. We reduce the dimensionality of the
problem to one. We �nd that, given our setting, the quotes set by the market
maker depend on the inventory of the traded asset but not on the amount of
cash held by the market maker.
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1 Introduction

One of the key roles in price formation at today's �nancial markets is played by market makers (MMs)
who are obliged to set buying and selling qoutes and trade for the prices they set. Clearly, as other
economic agents, MMs are pro�t maximizers. The economic analysis of their behaviour is, however, quite
complicated since the decision problems they face are usually intractable (see [1], [2] or [3]).

In the present paper, we suggest a rather simple version of such a decision problem. In particular,
we assume the MM to maximize (an utility) from his consumption while keeping the probability of the
bankruptcy (i.e. running out of the money or the traded asset) at a prescribed, perhaps very small level.
We do not give analytic solution of the problem but we reduce its dimensionality. As a result of our
analysis, we �nd that the quotes depend on the inventory of the traded assets but they do not depend
on the amount of cash held by the MM.

Even if our model is only single-period one, it does not su�er from the logic of �scorched earth�, i.e. the
today's actions do not steel from the future to a great extent. The reason for this is that, by keeping the
probabilities of crossing zero by the inventory processes very small, the model tends to �keep a distance�
from the boundaries. Nevertheless, dynamization of our model could be a promising direction of a further
research.

The paper is organized as follows: after a de�nition of the setting, the model is formulated and
partially solved. A short conclusion is �nishing the paper.

2 The setting

Let there be two types of agents: the market makers posting quotes (the best bid and ask) and the
(liquidity) traders.

We assume the market makers to be homogeneous, forming an oligopoly, so that they may be treated
as a single representative agent who sets the quotes A and B (the best ask, bid, respectively) in order
to maximize an utility from their consumption. Denote U the corresponding utility function and assume
that it is strictly increasing.

In reaction to the quotes, the traders post market orders, which we assume to be unit for simplicity.

Assume the traders to post orders with an intensity depending solely on a distance of the corresponding
quote to a fair price Π ∈ R: In particular, the intensity of the arrival of buy orders is assumed to be

κ (A−Π) ≥ 0.
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while the intensity of the sell orders' arrival is given by

λ (Π−B) ≥ 0.

Quite naturally, assume that both κ and λ are continuous strictly decreasing, de�ned on [0, Hκ], [0, Hλ]
respectively, for some Hκ, Hλ > 0 and that

κ(Hκ) = λ(Hλ) = 0

(i.e. nobody wants expensive asset and nobody wants to give anything for free).

3 The decision problem

Denote M and N the amount of money, traded asset, respectively, held by the MM and assume that the
MM maximizes the (utility from his) consumption while keeping the probability of running out of the
money or the commodity at a prescribed (small) level α i.e. he solves

V (M,N,Π) = max
A,B,C

U(C) (1)

A,B,C ≥ 0, B ≤ A, P [M +AX −BY − C ≤ 0] ≤ α, P [N + Y −X ≤ 0] ≤ α

X ∼ Po (κ(A−Π)) , Y ∼ Po (λ(Π−B)) , X⊥⊥Y.

Here, X and Y are random variables counting numbers of buy market orders, sell market orders, respec-
tively, which were posted given the quotes are A and B.

To simplify further analysis, we shall assume that the intensities κ and λ are high enough so that X
and Y may be approximated by normal variables, namely

X∼̇N (κ(A−Π), κ(A−Π)), Y ∼̇N (λ(Π−B), λ(Π−B)) (2)

Note that, given this assumption,

N + Y −X∼̇N (N + λ(Π−B)− κ(A−Π), λ(Π−B) + κ(A−Π)) ,

M +AX −BY − C∼̇N
(
M +Aκ(A−Π)−Bλ(Π−B)− C,A2κ(A−Π) +B2λ(Π−B)

)
so the constraints may be approximated by

κ(A−Π)− λ(Π−B)−N + q
√
κ(A−Π) + λ(Π−B) ≤ 0 (3)

Bλ(Π−B)−Aκ(A−Π)−M + C + q
√
A2κ(A−Π) +B2λ(Π−B) ≤ 0 (4)

where q is the α-quantile of the standard normal distribution.

Proposition 1. For problem (1) with the approximation (2), the following is true:
(i) An optimal solution exists for any M ≥ 0, N ≥ 0,Π ∈ R+.
(ii) In optimum, (4) is ful�lled with �=�.
(iii) In optimum, either λ(Π−B) = 0 or (3) is ful�lled with �=�.
(iv) If Â, B̂, Ĉ is the optimal solution of (1) then κ(Â−Π), λ(Π− B̂) is an optimal solution of

v(N,Π) = max
K,L≥0

[
A(K)K −B(L)L− q

√
A(K)2K +B(L)2L

]
(5)

B(L) ≤ A(K),

K − L−N + q
√
K + L ≤ 0 (6)

and Ĉ = v(N,Π) +M . Here,

A(K) = A(K,Π) = Π + κ−1(K), B(L) = B(L,Π) = Π− λ−1(L).

(v) If (K̂, L̂) is the optimal solution of (5) then either L̂ = 0 or

L̂ = Λ(K̂), Λ(K) = K −N +
q2

2
+
q

2

√
q2α + 8K − 4N



(vi) Denote

η(K) =
[
A(K)

(
K − q

√
K
)]
, K0 = N +

q2

2

(
1−

√
4N

q2
+ 1

)
, KL = κ(B(0)).

If the optimal solution K̂ of the problem

ṽ(N,Π) = max
K

η(K), 0 ≤ K ≤ K0 ∧KL, (7)

coincides with the solution of
v̇(Π) = max

K
η(K), 0 ≤ K ≤ ∞ (8)

then (K̂, 0) is the solution of (5).
(vii) If (K̂, L̂), L̂ > 0 is an optimal solution of (5) then K̂ is an optimal solution of

v̇(N,Π) = max
K≥0

[
A(K)K −B(Λ(K))Λ(K)− q

√
A(K)2K +B(Λ(K))2Λ(K)

]
, (9)

B(Λ(K)) ≤ A(K), K ≥ N

2
− q
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and L̂ = Λ(K̂).

Proof. (i) A strategy A = Π +Hκ, B = Π−Hλ, C = 0, producing X ≡ 0, Y ≡ 0, is clearly feasible. The
existence of optimal solution then follows from the continuity of κ and λ.
(ii) If Â, B̂, Ĉ were optimal and (4) was ful�lled with �<� for A = Â, B = B̂, C = Ĉ then there would
exist C̄ > Ĉ still ful�lling (4) which is a contradiction with the optimality of Â, B̂, Ĉ.
(iii) If Â, B̂, Ĉ were optimal with L̂ > 0 (with the consequence that B > Π −Hλ) and if (3) held with
�<� for A = Â, B = B̂ then, from the continuity of the intensities, there would exist ∆ > 0 such that (3)
is ful�lled for

A = Â, B = B̂ −∆, (10)

for which, however, AX − BY is less both in expectation and in variance than the same variable given
A = Â, B = B̂ which implies that (4) is ful�lled with < given (10) yielding the existence of a feasible
C̄ > Ĉ, i.e. a contradiction to the optimality of Â, B̂, Ĉ.
(iv) Consider a problem

max
A,B≥0

g(A,B) (11)

g(A,B) = Aκ(A−Π)−Bλ(Π−B)− q
√
A2κ(A−Π) +B2λ(Π−B)

B ≤ A, κ(A−Π)− λ(Π−B)−N + q
√
κ(A−Π) + λ(Π−B) ≤ 0

and note that g is the negative of the LHS of (4) without M and C hence, by (ii), for Â, B̂, Ĉ optimal to
(1) it has to hold that

g(Â, B̂) +M − Ĉ = 0 (12)

We show that Â, B̂ is then the optimal solution of (11): Indeed, if Â, B̂ were not optimal to (11)
there would exist Ā, B̄, B̄ ≤ ,̄ ful�lling (3) such that g(Ā, B̄) > g(Â, B̂). However, then Ā, B̄, C̄, C̄ =
Ĉ + (g(Ā, B̄) − g(Â, B̂)) > Ĉ would ful�l both (3) and (4) which is a contradiction to the optimality of
Â, B̂, Ĉ. Finally, note that (11) is equivalent to (5).
(v) Let K̂ ≥ 0,L̂ > 0 be optimal. By (iii), (3) holds with "=" hence L̂ has to solve the equation

(K̂ − L−N)2 = q2(L+ K̂)

whose solutions are

L1,2 = K̂ −N +
q2

2
± q
√
q2

4
+ 2K̂ −N

A trivial calculation shows that K̂ − L1 − N < 0 which proves that λ1 is indeed a solution of (3) with
"=". Once K̂ − L2 −N > 0, L2 cannot be a solution of (3) with "=" hence L1 is unique. Assume now

that K̂ − L2 − N ≤ 0 i.e. both L1 and L2 are candidates for the value of L̂. Denote f(L) = K̂−L−N√
K̂+L



and note that (3) holds with the equality i� f(L) = −q. The fact that f ′(L) = 1
2(K̂+L)3/2

(
N − 3K̂ − L

)
proves that f is possibly increasing starting form zero up to some threshold and decreasing starting from
the threshold hence, necessarily, f is increasing in L2 and decreasing in L1which implies, however, that
(K̂, 0) ful�ls (6) and, by arguments similar to those from (iii), the strategy K̂, L̂ is dominated by (K̂, 0)
if L̂ = L2. Therefore, it has to be L̂ = L1.
(vi) Note �rst that (7) coincides with (5) with an additional constraint L = 0. Further, since the objective
function of (5) is decreasing in L, any solution if (5) is dominated by (K̂, 0) given that K̂ is a solution of
(8). If K̂, in addition, satis�es the conditions of (7), necessarily (K̂,0) is the solution of (5).
(vii) The assertion follows from (v).

The Proposition, we have just proved, gives us a directions for solving the problem (5) (and, consequently,
(1)). The procedure is as follows

1. Solve (7) and (8). If the optimal solution K̂0 of (7) coincides with that of (8) then
(
K̂0, 0

)
is the

optimal solution of (5) and we may stop the procedure.

2. If the solutions of (7) and (8) di�er, solve (9) and check the objective value reached its solution
(K̂, L̂) with that of (K̂0, 0). The solution with the higher objective value is the solution of (5).

Note also that, quite surprisingly, the optimal quotes depend only on the inventory of the traded asset
but not on the inventory of money.

4 Conclusion

We have formulated a simple but realistic decision problem of a market maker and we reduced its solution
to one-dimensional problems. Our result may be useful in further analysis of the microstructure e�ects
at �nancial markets.

Acknowledgements

This work was supported by grants No. 402/09/0965, P402/10/1610 and P402/10/0956 of the Czech
Science Foundation. I thank an anonymous referee for a correction of several my errors.

References

[1] B. Biais, L. Glosten, and Ch. Spatt. Market microstructure: A survey of microfoundations, empirical
results, and policy implications. Journal of Financial Markets, 8:217�264, 2005.

[2] A. Madhavan. Market microstructure: A survey. Journal of Financial Markets, 3:205�258, 2000.

[3] A. Madhavan, and S. Schmidt. An analysis of changes in specialist inventories and qoutations. J. of
Finance, vol. XLVIII (5). 1993


